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The antiferromagnetic spin-$;uXZ model 013 rings with an 
odd number of sites 

M Karbachf and K-H Mutter 
Physics Depmment. University of W u p W ,  42097 Wupperlal, Germany 

Received 30 November 1994, in final form 17 Ma y  1995 

Abstract. The ground-state energies of the antifemmagnetic X X Z  model at a given spin are 
desennined on chains with an odd number N of sites. Analytical and numerical solntions of the 
Bethe ansaQ quaions are compared for the N-even and N-odd case. The scaling propertieS 
of the ground-state energies enable the determination of the zero-tempe" susceptibility. For 
the isompic case, we analyse the logarithmic t e m  in the low-field limit. 

1. Introduction 

The finite-size behaviour of the energy eigenvalues E, of the antiferromagnetic X X Z  model, 
with periodic boundary conditions: 

N 
H : = C I S ~ ( ~ ) S ~ ( X + I ) + S Z ( X ) S Z ( X +  ~ ) + C O S ~ S ~ ( X ) S ~ ( X + ~ ) ]  (1.1) 

cos y < 1. Conformal 
X = l  

has been studied intensively [la] in the critical region 0 < p 
invariance predicts the finite-size behaviour of the ground and excite& states: 

where c is the central charge and the xn are the scaling dimensions of the scaling operators. 
These predictions have been checked by solving the Bethe ansatz equations analytically for 
N + CO and numerically on finite systems. 

The Bethe ansatz equations depend crucially on the quantum numbers of the eigenstate. 
For example, the momentum of the ground state in the sector with given total spin 
S = E, Sj(x) is known to be 

N =4,8,12. ... 
N = 2,6,10, .. . mod 2 ~ ,  

S + 1 P =--x (1.2) 

For an odd number of sites the ground state is degenerate with two different momenta: 

+ i ( l r l )  N=3,7,11, ... 

+f( l&1)  N=5,9,13, ... 
mod2n. (1.3) 
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Equation (1.3) has been found numerically for y = 0 and N < 15 in [SI. In [9] 
equation (1.3) is shown to be valid for 0 < y < ~ 1 2 .  

To onr 
knowledge Alcaraz et al [7] were the only ones who solved the Bethe ansatz equations 
for the N-odd case. It should be noted, however, that our Hamiltonian (1.1) differs from 
the Hamiltonian used in [7]. The latter is obtained from (I.l), by a minus sign in front of 
the first two terms and an overall factor of 2. 

The outline of the paper is as follows. In section 2 we present the Bethe ansatz equation 
for the N-odd case. The solution to leading order by means of the Wiener-Hopf method 
is found in the appendix. The finite-size effects of the ground-state energies at a given 
total spin S is given in section 3. The scaling properties of these energies are discussed in 
section 4. They are used to determine the zeretemperature magnetization curve. 

M Karbach a d  K-H Mutter 

The Bethe ansatz calculations of 161 were restricted to the N-even case. 

2. The Bethe ansatz equations for an odd number of sites 

The Bethe ansatz equation for the Hamiltonian (1.1) are well known [2]: 

i = 1, .... r Ji 1 Y zi ~1 zi -z' - = - tan-' (cot - tanh z) - - 
N x  2 N= 2 

tan-' (cot y tanh 2 
j = l  

with 
N 

r = - - S .  
2 ~ 

For the N-even case, the quantum numbers Ji take the following values in the ground state 
at a given spin S: 

(2.2) 
N 

2 2 
r + l + i  J .  - -- i = 1,. . . , r = - - S. c -  

This distribution of the Ji is'symmetric in the following sense: 

Ji = -JN/Z-S+I-I 
ND-S 

Jj = 0. 
i=l 

Equations (2.1) and (2.2) represent an implicit equation for the roots zi from which we can 
compute the ground-state energies per site, measured from the ferromagnetic state with all 
spins aligned: 

The momentum of the Bethe state is given by the quantum numbers Ji: 

(2.4) 

With the choice (2.2) for the Jf the quantum numbers (1.2) of the ground-state momenta 
are guaranteed. 

In the N-odd case, we start from equations (28) and (29) in the original paper of Bethe 
~~ 

[IO]. Then one is led to the following choice for the quantum numbers Jj: 

+ i (2.5) 
r + l f l  N 

2 2 
J!*) = - i = 1, . . . , r = - - S. 
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This distribution is not symmetric in the sense mentioned above: 
JF) =,- J(7) 

N/Z-Sfl--i 

1 N  
2 2  

NJZ-S 

Jy' = +- (- - S) . 
i = l  

Equation (2.5) guarantees that the ground states have the momenta (1.3).  We have checked 
that the choice (2.5) leads to the correct ground-state energy values in case of the isotropic 
Heisenberg model [SI  and the XX model, where the Bethe ansatz equations (2.1) can be 
solved analytically: 

{ :[:( ) I} f o r y = -  n 
2 

zi=2tanh tan- - S - - - - 1 - 6  f i  

with 

2~1 ' N  odd 
0 N even. 

Inserting these roots in (2.3) we get for the gound-state energy at a given spin S: 
cos(nS/N) cos(irS/N) 

N sin(n/N) 
e ( y  =?/2,S,  N )  = - , . 

This is identical to the result obtained by Fabricius [ 1 I] by means of a Jordan-Wigner 
transformation; For y # x / 2  the solution~of the Bethe ansatz equations (2.1) is more 
involved. The details'of the solution by means of the Wiener-Hopf method are given in 
appendix A. Here we only quote the result for the ground-state energies at a given S for 
the N-odd case: 

e ( y ,  S, N) - e,&) = 
~3 - 6s' (1 - E)) sin y 

(1 - 2(1 - Y / X )  . n  12N2 y 

+O(N-4, ~ - 2 - 4 r / ( r - y ) ) ,  (2.6) 

For convenience we also quote the known result for the N-even case [5, q: 

(2.6) and (2.7) can be compared with the results of Eggert and Afileck [12], obtained with 
field theoretical methods. Identifying ih equation (2.45) of l7.l ZnRZ = 1 - y/ ir  and 
U = n sin y / ( 2 y )  one arrives at the expressions (2.6) and (2.7), except for the first term on 
the right-hand side. 

The isotropic case can be obtained in the combined limit: 
Z z + o  ~ z ' = -  fixed. 
Y 

In this case the finite-size corrections in next-to-leading order for chains with an odd number 
of sites tum out to be 

Y + O  

1 
e(0,  S, N )  - e,(O) = - nz [' (1 + A) +6S2  (1 12N2 2 
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This differs from the result for chains with an even number of sites obtained in [6]: 

M Karbach and K-H Miitter 

In In N e(0. S, N )  - e,(O) = -- 1 ~ ~ z [ 1 - 6 s z ( 1 - ~ ) ] + o ( N ~ ( l n N ) ~ ’  

Following [7] we define 

(2.10) 

where e&, N) is the absolute ground state for chains with an even and add number of 
sites, respectively. In the thermodynamical limit we get from equations (2.6)42.9): 

N even 

In the N-even case the ground state has the quantum numbers of the underlying conformal 
field theory and C N ( ~ )  = 1 can therefore be identified with the conformal anomaly. This 
is not the case for N odd, where the lowest eigenstate has indeed the quantum numbers of 
an excited state. 

Figure 1 shows the ratio c,v(y)/c(y) for chains with an odd and even number of sites 
as a function of the inverse chain length and various values of the anisotropy. 

1.0015 
Nevol - Nodd 

..__ .._. 

-- 1.01 

I : : : : : : : :  : : : : : : : I  
0 0.002 0. w4 0.006 0.008 

IN 

Figure 1. The estimator of the conformal anomaly c,w(y) (equation (2.10)) normalized to the 
theoretical value c ( y )  (equation (2.11)) for chains with an even (0) and odd (0) number of 
sites ploned against 1/N. The individual curves belong to the anisotropies y / x  = 0. 0.1, 0.2, 
0.3, 0.4, 0.5. 

The isotropic model is of special interest. Therefore, we discuss this case separately. 
From equations (2.10) and (U), (2.9) we get 

for N even (2.12) 
1 In In N 1 

C N ( O )  = a0 + al- + az- + a3 - + .. . 
In3 N in4 N in4 N 
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1 In In N 1 
InN InZN InZN 

cnr(0) =bo + bi- +bz- fb3-  +... ~ for N odd. (2.13) 

From the analytic expressions (2.8)-(2.10) and the results of 161 one obtains for the 
coefficients 

uo = 1 ai = 0.3433.. . bo = -2 bi EO. (2.14) 

On the other hand we have determined these parameters ai, b; from a fit to the numerical 
solutions of the Bethe ansatz on finite rings. These results are listed in tables 1 and 2. They 
depend on the interval N ~ , ,  6 N 6 Nmax for the chain length N. 

Table 1. The fits for chains with an even number of sites. 

Nmim-Nmm 1 - 01 a2 a3 

1284096 2.8 x 0.545 -1.65 0.81 
25HI92 1.4 x lo-’ 0.479 -1.32 0.59 
512-16384 1.2 x lo@ 0.461 .-I21 0.52 
1284096 0 0.438 -1.16 0.54 
256-8192 0 0.401 -0.92 0.33 
512-16384 0 0.374 -0.73 0.15 

Table 2. The fits for chains with an odd number of sires. 

Nmim-Nmm 2 -bo bi la bf 

1294097 4.9 x 0.019 -0.28 -0.31 
257-8193 6.8 x 0.008 -0.24 -0.33 
513-16385 7.4 x loM5 0.008 -0.24 -0.33 
1294097 0 0.007 -0.24 -0.32 
257-8193 0 0.006 -0.24 -0.33 
513-16385 0 0.009 -0.26 -0.31 

The estimated errors are within the last digit. The last three fits start with the theoretical 
value a0 = 1 and bo = -2, respectively. From these fits we conclude: 

for N even 
In In N 1 + 0.15(30)- 

1 
c ~ ( 0 )  = 1 + 0.375(30)- - 0.73(40)- 

In3 N in4 N ln4 N 

for N odd. 
1- InlnN 1 

In N InZ N Inz N C X @ )  = -2+0.008(10)- - 0.25(1)- -0.32(1)- 

It is remarkable to note that the two methods lead to consistent results for the coefficient 
bo, bl in the N-odd case. The situation in the N-even case is different. Here, the analytical 
result a1 = 0.3433.. . obtained by means of the Wiener-Hopf method [6] seems to differ 
from the numerical result az = 0.375(30). However, it is hard to estimate the error in the 
numerical result in a reliable way. This discrepancy has been found before by M e c k  et aE 
[ 131, who determined a1 with a third method based on the renormalization group equations. 
They found ai = 3/8 = 0.375, which is in good agreement with our numerical result. 
Finally, let us mention Nomura’s 1141 result: a, = 0.365 16(2), which was obtained from 
a numerical solution of the Bethe ansatz equation. 
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3. Scaling behaviour of the energies and the susceptibility at zero temperature 

In this section we are going to discuss the scaling properties of the ground-state energies 
per site in the various spin sectors: 

e ( y ,  S, N )  = e ( y ,  S I N )  + O ( N 4 )  
The validity of (3.1) enables us to compute the magnetization and susceptibility curves at 
zero temperature, as was shown in [E]. The magnetization at a given external field h: 

M Karbach and K-H Miitter 

01 > 0 0 < S I N  6 112. (3.1) 

m(v, SIN)) = (3.2) N 
is defined as the total spin S per site. The magnetization curve then follows from (3.2) and 
(3.1): 

Using the asymptotic expansion (2.6) and (2.7) for the groundlstate energies, we find for 
the low-field behaviour (h -+ 0) of the magnetization: 

(3.3) 

In the isotropic case (y + 0) we use the expansions (2.8) and (2.9) and arrive at 

m(O,h)=- (3.4) 

- 1 . 4 C . :  : ' ; : : : r :  : : : i : . , : ; : : 0 : : i : : . 0.02 . : : : : &t 
0 0.05 0.1 0.15 0.2 0.25 

(WJZ 

Figure 2. The ground-state energies e(y, S. N )  for different anisotropies y/n = 0, 1 4  3/10, 
2.5, 112. plotted against m* = (S /N)*  for N = 11, 13, 15. 17 (0) and N = IO, 12, 14, 16 (0). 
The full curves are the Bethe ansatz solutions for N = 2048. 

The scaling property (3.1) is satisfied for all magnetizations and energies and can be 
seen already on small systems with N = 10, 12, 14, 16 and N = 11, 13, 15, 17 (see 
figure 2). However, the results for N odd are systematically above and those for N even 
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below the scaling curve. These tiny deviations c" be taken into account by introducing an 
'improved' scaling variable: 

N even 
(3.5) 

where 
A sin y 

I ( Y )  = 
2 Y  

The additional term proportional to 1 / N 2  takes into account the lowest-order finite-size 
corrections of the ground-state~energies at a given spin S. It vanishes at m = 1/2, where 
the ground-state energy is given by e(y. m =~ 1f2) =-0 for all, N .  

P e w 

0 

-0.5 

-I 

0 0.05 0.1 0.15 0.2 0.25 

rgure 3. The ground-state energies e(y. m) for different anisou6pies ylz ~= 0, 1/5, 3/10, 2!5, 
ID, plotted against m:,, (equation (3.5)) for N = 11, 13. 15. 17 (0) and N = 10. 12. 14, 16 
(m). The full curves are the Bethe ansatz solutions for N = 2048. 

Figure 3 demonstrates that the thermodynamical limit of the scaling curve can be 
extracted very accurately already from smdl systems N < 17, once we use the improved 
scaling variable. 

Let us next turn to the +"temperature susceptibilities 

which can be obtained from finite systems via 
1 1 
N M y ,  m + V N )  - M y ,  m)' 

x ( y 3 h ) = -  

. .  

(3.6) 

They are shown in figure 4 for various anisotropies. The inset shows a magnification 
for small fields and y = ~ O .  Circles and dots represent Bethe ansatz results from chains 
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h 

Figure 4. The zero-temperature susceptibility curves ~ ( y .  h) for d i f f m t  values of y/n. The 
inset shows a magnification for small fields and y = 0. The circles and dots represent the data 
points @om chains of a length N = 4096 (0) and N = 2048 (0). respectively. The full curve 
in the magnification represents the estimates (3.7) to (3.8). 

with N = 2048 and N = 4096, respectively. In the isotropic case the low-field behaviour 
follows from (3.4): 

Inz h 
In I In hl - al - - az - + . . . 1 -- 1 

X(O,h) = - 
i r 2  ( 21nh Inz h (3.7) 

The coefficient for the higher-order terms a , ,  a2 were estimated from a fit to the numerical 
results: 

al = 0.2499(3) a2 = 0.25(1). (3.8) 
Using the Bethe ansatz and the string hypothesis Lee and Schlottmann [16] found at = 1/4 
which is in good agreement with our~results. Finally let us mention that the zero-field 
susceptibility in the zero-temperature l i t  (7 -+ 0) has a similar behaviour to (3.7): 

X ( O , h = O , n = - ,  R ' ( I-- 21117 1 +-..) (3.9) 

as was found by Eggert et al [17] by means of Abelian bosonization. This is easily 
understood, if the susceptibility scales in the combined limit: 

h 
T 7 + 0  h + O  z=-fixed. 

Provided that this scaling is correct, we can predict from the low-field behaviour (3.7) the 
next term in the low-temperature behaviour. 

4. Conclusion 

The ground-state properties of the XXZ model depend crucially on the number of sites. 
One has to distinguish four cases: 

N = 4 n + j  j=O,1 ,2 ,3  n = l . 2 , 3  ,.... 
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The ground state is unique and translation invariant for j = 0. For j = 2 the ground state 
has momentum p = x .  In the N-odd cases ( j  = 1,3) the ground state turns out to be 
fourfold degenerate with the two momenta given in (1.3). 

In this paper we have determined the ground-state energies at a given total spin for 
the N-odd case. The finite-size behaviour differs from the N-even case as can be seen 
from equations (2.6), (2.7) and (2.8). (2.9), respectively. Based on this finite analysis, we 
studied the scaling behaviour of these ground-states energies. Introducing an improved 
scaling variable (3.5) we demonstrated that the scaling curve in the thermodynamical limit 
can be extracted quite accurately from small systems N < 17. From the scaling curve we 
derived the zero-temperature magnetization and susceptibility. In particular, we studied, for 
the isotropic case, the logarithmic corrections to the susceptibility in the low-field limit. 

Appendix. The Wiener-Hopf solution of the Bethe ansatz equations for N odd 

We follow the method introduced by Woynarovich and Eckle 161 in order to analyse the 
finite-size %ehaviour of the ground-state energies. Starting from the Euler-MacLaurin 
formula and the Wiener-Hopf method we solve the resulting integral equations in the 
standard fashion. In the following, chains with an odd number of sites are considered. 
We introduce the density of roots for the two distributions J/*) (equation (2.5)). 

(f) dZy’(z) 
UN ( 2 )  :=-. 

dz 
They are related to each other due to (2.5): 

UN (*I (z) = u.p(-z). 

This leads to the integral representation: 

where 
+, exp(iwz)sinhw(n - 2y) 

2coshwysinhw(a - y )  
dw 

and 
NIZ-S  

S(2 - Zj)  - Uf)(Z). 

The energy per site (2.3) is given by 

Here 
tanh(wy) 
tanh(wx) em(y) = -sin y l+m (1 - 
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is the ground-state energy for the infinite system. Let A(*) denote the largest roots for the 
two different sets J P ) .  They are determined from 

M Karbach and K-H Mutter 

or, equivalently, 

Integrals of the type l g ( z ) S ~ ( z )  are approximated by means of the Euler-MacLaurin 
formula: 

To perform the Wiener-Hopf factorization, we introduce 

The Fourier transforms of equations (A.l) and (A.3), (A.4) provide us with a set of equations 
to determine the leading-order corrections: 

io + exp iw (A (+) + A(-)) 
1 

x -- [ ~ I T N  -I- 24nN2u(*)(A(*)) 

11 1 iw 
4 n N  Z4aN2u~)(A(*)) 

where 
sinho(n - 2 y )  

2cosh(yw)sinhm(ir - y )  
p(w)  = 1 - 

and 
+m 

u(*)(A(*)) = 2 / _  eh*)(w)dw. 
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Applying the approximation (A.5) on the energy (A.2) yields 

Solving the system of equations (A.6HA.9) one arrives at the expression (2.6) and (2.8) 
for the leading finite-size behaviour of the ground-state energies in the N-odd case. 

References 

[l] Bomer J C and Fisher M E 1964 Phys. Rev. A 135 MO 
[2] Yang C N and Yang C P 1966 Phys. Rev. 150 321,327; Phys. Rev. 151 258 
[3] Cloizeaux J des and Gaudin M 1966 J. Moth. Phys. 7 1384 
[4] Bliite H W 1 1978 Physim B 93 93 
[SI Hamer C J 1987 J.  Phys. A: Math Gen. 19 3335 
[6] Woynamvich F and Eckle H P 1987 3. Phy,.r. A: Math Gen. 20 L97 
[7] Alcaraz F A, Barber M N and Batchelor M T 1988 Ann Phys. 182 280 
[SI Fabricius K, Liiw ti, Miiuer K-H and tieberholz P 1991 Phy.  Rev. B 44 7476 
[9] Karbach M 1994 Thesis University of Wuppertal WUD 94-6 

[IO] Bethe H A 1931 2 Pkys. 71 205 
[I 11 Fabricius K 1993 Z Phys. B 92 519 
[I21 Eggen S and Afflecl; I 1992 Phy.". Rev. B 46 10866 
[I31 Ameck I, Gepner D, Schulz H I and Ziman T 1989 J. Phyr. A: Math. Gen. 22 511 
[I41 Nomura K 1993 Phy.  Rev. B 48 16814 
[I51 Fabricius K, Karbach M, Lijw U and Miilter K-H 1992 Phys. Rev. B 45 5315 
[I61 Lee K-J B and Schiottmann P 1987 Phy.s. Rev. B 36 466 
I171 Eggert S, AEeck I and Takahashi M 1994 Prepria university of British Columbia UBCTP-94-001 


